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PROPELLERS IN YAW
By HersxrT 8. RIBNER

SUMMARY

It was realized as early as 1909 that a propeller in yaw
decelops a side force like that of @ fin. In 1817, R. G. Harris
expressed this force in terms of the torgue cocfficient for the
unyawed propeller. Of several attempts to express the side
Jorce directly in terme of the shape of the blades, howerer, none
has been completely satigfactory. An analysis that incorpo-
rates induction effects not adeguately covered in previous work
and that gires good agreement with experiment over a wide
range of operating conditions s presented herein. The present
analysis shows that the fin analogy may be extended to the form
of the side-force expression and that the effective fin area may
be taken as the projected side area of the propeller. The effec-
tive aspect ratio is of the order of 8 and the appropriate dynamic
pressure i8 roughly that af the propeller disk as augmented by
the inflow. The variation of the inflow velocity, for a fized-
pitch propeller, accounts for most of the variation of side force
with advance-diameter ratio V[nD.

The propeller forces due to an angular celocity of pitch are
also analyzed and are shown to be very semall for the pitching
relocities that may actually be realized in maneurers, with the
exception of the gpin.

Further conclusions are: A dual-rotating propeller in yaw
develops up to one-third more side force than a single-rofating
propeller. A yawed single-rotating propeller experiences a
pitching moment in addition to the side force. The pifching
moment 18 of the order of the moment produced by a force equal
to the side force, acting at the end of a lever arm equal to the
propeller radius. This cross-coupling between pitch and yaw
18 amall bt possibly not negligible.

The formulas for propellers in yaw derived herein (with the
éxception of the compressibility correction) and a series of
charts of the side-force derirative calculated therefrom have been
presented without derivation in an earlier report.

INTRODUCTION

The effect of power on the stability and control of sircraft
is becoming of greater importance with increase in engine
output and propeller solidity. An important part of this
effect is due to the serodynamic forces experienced by the
propeller under any deviation from uniform flight parallel
to the thrust axis. The remaining part is due to the inter-
ference between the propeller slipstream and the other perts
of the airplane structure.

A number of workers have considered the forces experi-

enced by the propeller. It was pointed out in 1800 (reference 1)
apparently by Lanchester, that a propeller in yaw
develops & considerable side force. The basic analysis was
published in 1918 by R. G. Harris (reference 2), who showed
that a pitching moment arises as well. Glauert (references 3
and 4) extended the method to derive the other stability
derivatives of a propeller.

Harris and Glauert expressed the forces and moments
in terms of the thrust and torque coefficients for the unyawed
propeller, which were presumably to be obtained experi-
mentally. The analyses did not take into account certain
induction effects analogous to the downwash essociated with
a finite wing. It is noteworthy that with a semiempirical
factor the Herris equation for side force does give good
agreement with experiment. (See reference §.) Pistolesi
(reference 8) in 1928 considered the induction effects but his
treatment was restricted to an idealized particular cese.
Klingemann and Weinig (reference 7) in 1938 published an
analysis neglecting the induction effects; the treatment
appears almost identical with the account given in 1935 by
Glauert in reference 4.

There have been several notable attempts to express the
gide force directlyin terms of the shape of theblades. Bairstow
(reference 8) presented a detailed analysis in 1919 that
neglected the induction effects. Misztal (reference 9) pub-
lished an investigation in 1932 that did not have this limite-
tion and that is probably the most accurate up to the present.
Misztal’s result, however, is in a very complex form from the
point of view of both prectical computation and physical
interpretation; there is, in addition, an inaccuracy in the
omission of the effects of the additional apparent mass of the
air disturbed by the sidewash of the slipstream.

YVery recently Rumph, White,and Grumman (reference 10)
published an analysis that relates the side force directly to
the plan form in a very simple menner. Reference 10, how-
ever, (1) does not include the ordinery inflow in the analysis
end (2) applies unsteady-lift theory in an improper manner to
account for the induction effects. As e consequence of (1),
the equations are badly in error at high slipstream velocities.
As a consequence of (2), the equations fail to predict the
substantial increase in side force that experiment shows is
provided by dual rotation. The improper use of unsteady-
lift theory consisted in using formulas that apply to the case
of a finite airfoil with an essentially rectilinear wake. The
vortex loops shed by the finite airfoil, which produce the
interference flow, are distributed along this rectilinear wake.
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The corresponding vortex loops shed by & propeller blade in
yaw, however, lie along the helical path traversed by the
blade. The interference flow is quite different from the
flow for the case of a rectilinear wake, In fact, it can be
gshown that the vortex loops shed during the unsteady lift
aline themselves in such a way as to produce an inflow anti-
symmetry. This antisymmetry is one of the two induction
effects that will be deduced in the present analysis from
momentum considerations, . ..

To sum up, there are available no a,nalyses based on the
blade shape that are sufficiently accurate over the whole
range of propeller operating conditions and the analysis that
is the most accurate is not in a satisfactorily simple form,
For this reason a new method of analysis is presented that is
an attempt at greater simplicity and accuracy. The present
analysis shows that the fin analogy may be extended to the
form of the side-force expression. The effective fin area
may be taken as the projected side area® of the propeller
and the effective aspect ratio is of the order of 8. This
equivalent fin area may, with small error, be regarded as
situated in the inflow at the propeller disk and subject to the
corresponding augmented dynamic pressure. The variation
with V/nD of the dynamic pressure at the propeller disk, for
& fixed-pitch propeller, therefore accounts for most of the
variation of side force with V/aD.

SYMBOLS

The formulas of the present report refer to a system of
body axes. For single-rotating propellers, the origin is at
the intersection of the axis of rotation and the plane of
rotation; for dual-rotating propellers, the origin is on the
axis of rotation halfway between the planes of rotation of the
front and rear propellers. The X-axis is coincident with the
axis of rotation and directed forward; the ¥Y-axis is directed
to the right and the Z-axis is directed downward. The
symbols are defined as follows:

D propeller diameter

S disk area (xI?/4)

S wing aree

R tip radius

r radius to any blade element

o minimum radius at which shank blade sectaons

develop lift (taken as 0.2R)
z fraction of tip radius (r/R)
Zo value of z corresponding to r, (n/R)
Z, ratio of spinner radius to tip radius
B number of blades
b blade section chord
c wing reference chord
"

relative blade section chord (r or T-%Dng )
[}

=55,
The

eotedndumhtheuumhehdbythbhdumaphnemmmweuhg

ro oz one or two biades this ares varles with axtmuth, but the average value iz
conoern here. averige

the number of blsdes {imes tha
blade center line and the axis of

g

fi(e)

t:(¢)
f(a)

solidity at 0.75R (:-%;o")
free-stream velocity

1[3—-”—7—1 - -
inflow factor ; ;in appendix B, speed

of sound in free stream

normal acceleration

“acceleration of gravity

axial velocity at propeller disk (V'(1+a))

velocity component in direction of decreasing 0
of relative wind at blade clement
(2xnr—Slipstream rotational velocity)

slipstream velocity far behind propeller (in prac-
tice, 1 diam. or more) (V(14-2a))

- free-siream dynamic pressure (2pT "); also, angu-

lar velocity of pltchmg
function defined in equation (1)
function defined in equation (2)

- q_fmor (Gtaliiad (2

1F(I+2a)

revolutions per second

. advance-diameter ratio (1/nD)

blade angle to reference chord

““blade angle to zero-lift chord
_angle of blade relative to Y-axis measured in

direction of rotation
effective helix angle including inflow and’ rotalion

(=)

* angle of yaw, radians

effective anglo of attack of blade element (Ba—¢)
angle of sidewash in shpstronm far Lehind
propeller

" nominal induced angle of sidewash at propeller disk
- effective average induced angle of sidewash at

propeller disk
sidewash velocity far behind propeller
airplane lift coefficient
blade section Jift cocfficient

_ blade section profile-drag cocfficient

glope of blade section lift curve, per radian (de/do;
average value taken as 0.85X2x)
.force component on a blade element in direction

of decreasing 8 (Sce fig. 1.)
thrust

thrust coefficient (T/p1*D?)
thrust coefficient (T/pn*D")
torque

torque coefficient (Q/pV*LF)
" weight of airplane

, ¥, Z forces directed along positive directions of X-,

Y-, and Z-axes, respectively
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L, M, N moments about X-, ¥-, and Z-axes, respectively,
in sense of right-hended serew; in appendix B
and figure 8, Af refers to the free-stream Mach

number
AL, effective Mach number for propeller side force (See
appendix B.)
A’, B’, functions defined in equations (4)
(4
a’, b, integrals defined by equations (21) and (30)
¢, d
by, bs integrals defined by equations (31) and (32)
L side-area index defined by equation (41) (%ra’)
I integral defined by equation (42) (%Tb;)
I integral defined by equeation (43) %’d’)
A defined by equetion (24) (zero for dusl-rotating
propellers)
A defined by equation (44) (zero for dual-rotating
propellers)
m defined by equation (45)
ky correction factor defined by equation (34)
ke sidewash factor defined by equation (35)
k, spinner factor defined by equation (36)
K constant in equation for £,
Cy side-force coefficient (1 Y or §-I’,)
= r
2
; A . A 8
Ca pitching-moment coefficient 1 or ;_-M .
EpPDS’

Cr'y side-force derivative with respect to yaw (dCy’/oy)
(4/%4 pitching-moment derivative with respect to yaw

(2Cw'[2¥)
Or; side-force derivative with respect to pitching

ACY’
)

(42

Cu} pitching-moment derivative with respect to
oCx"
pitching g )
(0(255

S, projected side area of propeller (See footnote 1.)
A aspect ratio
Subscripts:
0.76R measured at 0.76R station (z=0.75)

c divided by pV2IP if a force, by pV2IP if ¢ moment;
designates quantities corrected for compressi-
bility in eppendix B and figure 9

e effective

k index that takes the values 1 to B to designate a
particuler propeller blade

maz maximum

stall at stall

A bar over 2 symbol denotes effective average value.
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ANALYSIS
PROPELLER IN STEADY AXIAL FLIGHT

The section shown in figure 1 is part of a right-hand pro-
peller blede moving to the right and advancing upward.
The components of the relative wind ere V, and V7, where
Ve is the axial velocity including the inflow and 17 is the
rotational velocity including the slipstream rotation. The
force component in the direction of decreasing # is:

dF=dL sin ¢+dD coa ¢

c;si.n ¢+G‘° cos ¢
sin? ¢

=£Vb dr

=5Veb drifi(#)] 0
and the contribution. to the thrust is
dT=dL cos ¢—dD sin ¢

€1 €08 p—cy, Sin ¢
sin? ¢

=§V.=b dr

=V drit(9)] @)
The equations mey be divided by p¥2D* to reduce the terms

to nondimensionel form. Inasmuch es ¥,=V(1+}a), there
results

aF~LEDL S @

ar =9t 2 4 s

where

dF
o= pape

daT
o= o1

avy

F1oUzE 1.—Vector relations at & blade element.
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PROPELLER UNDER ALTERED ¥LIGHT CONDITIONS

Force components on blade element.—In equations (1)
and (2) for dF and dT, V', occurs explicitly in the factor 17,
and implicitly in ¢ and in terms depending on ¢; ¥ occurs
only implicitly in ¢ and in terms depending on ¢. The

'
relationship is ¢=tan"'3, which can be seen in figure 1.

By pertial differentiation, therefore, the increments in dF
and dT due to any small changes whatsoever in Vy and V,
are, for fixed blade angle,

$(dF) o= a(dF) %dv + a(dF) a@f) Sa% av,

and a similar expression for a(dT). The substitution of
equations (1) and (2) gives, when put in nondimensional

' “%f-)]

s@ry =14’ d:c[dVa S Lravi(Pr

sary=91 2 4 [dv.—v'b—qbwv( )]
The following abbreviations are helpful:

2¢ ofy )
7oovios

B’ 2f
T’;=1F¢+
= | @

D 25, 09 o
A AR A

b/D

(b 0.7T8R

where f; and ¢, are defined in equations (1) and (2), respec-
tively. Equations (3) become

wn-S2) (i
serp=SL2(B) (o ALY i

0.78R
where all the factors are nondimensional.

Forces and moments experienced by complete propeller.—
Equations (5) give the component-force increments due to
altered flight conditions on an element of a single blade,
divided by p,¥2D% The force and moment mcrements
experienced by the complete propeller of B blades, with
respect to the body axes shown in figure 2, may be written as

Forces:

X_T='§:_,‘f f" % @), (8)

Y='§;’f [ samssin e, @)
k=B R

z=33 " s@F)s con 0, ®)
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b 4
¥,
74

Resullont wind ot
; propslier including
#  inflow and sidewosh
(~%)
-~ -Axial velocitly mckuding
mnflow (=13 + d)
. —
| -5 Sida-wind fy
. including side
(=% (¥-¢)

~
-
-~
.

2" Component of wind
normol to r -~
@V = ¥; (¥-¢) sin §)
Z
Fracae 2.—Vector relations fur propelier In yaw.
Moments:
L-=Q=—3,]" rsup ®
&), T8eh:
M='§‘,': f ® ¢ 5(dT), sin 0, (10)
=io/1s
k=B R
N=—EL r 8(dT); cos 8, (11)

where the subscript k refers to the kth propeller blade. In
order to obtain the nondimensional form X, ¥, Z, and T are
divided by o1=D* to give X, Y,, Z., and T, and L, A1, N,
and @ are divided by V2P to give L, 31,, N, and Q.. In the
equations () to (11), 6(dF). becones a(dF,)., 8(dT)r becomes

3(dT.):, and r becomes 5= The hmxt,s of integration be-
come:cotol,wherezo=? : Cme

Stability derivatives of propeller.—Tho analysis up to this
point bas been of a general nature in that the formulas are
applicable, for a fixed-pitch propeller, to any type of deviation
from steady axial advance—that is, the formulas may be
used to_calculate all the stability derivatives of & fixed-pitch
propeller. In addition, the formulas are applicable to those
stability derivatives of a constant-spced propeller thai are
not assoriated with changes in blade angle. This restriction
could he removed, however, by extending the analysis at the
outset to include & term in dg,.

A particular stability derivative can be obtained by
determining and substituting in equetions (5) the velues of
dVy/V. and dV,fV, appropriate to the motion under con-
sideration. For dual-rotating propellers cquations (5) must
be set up independently for both propeller sections with signs
appropriate to the respective directions of rotation. Values
of dVy/V, and d17,/V, that are average for both sections are
used for each section. Note that d1% is the change in the
component of the effective relative wind acting on a blade
in its plane of rotation and d¥ must therefore include the
effect of any changes induced by the motion in the rotational
speed of the propeller relative to the airplane.
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The possible unaccelerated motions of a propeller comprise
flight (1) at a steady angle of yaw, (2) at a steady angle of
piteh, (3) with an angular velocity of yaw, (4) with an angular
velocity of pitch, (5) with an angular velocity of roll, (6) with
an increment in forward speed, and any combination of these.
It is clear from the symmetry of the propeller that motions (1)
and (2) are similar and motions (3) and (4) are similar.
Accordingly, of the six possible deviations of a propeller from
a given mode of steady axial advance, only four are distinet.
These four may be taken as angle of yaw ¢, anguler velocity
of pitch ¢, angular velocity of roll, and increment in forward
velocity.

Glauert has shown in reference 3 that neither yawed flight
nor flight with an angular velocity of pitch, when these dis-
turbances are small, changes the torque on the propeller.
Accordingly, neither mode will tend to change the rotational
velocity, and derivatives with respect to yaw or engular
velocity of pitch are independent of the rate of change of
engine torque with engine revolutions. Furthermore, results
for these derivatives obtained for s fixed-pitch propeller
are equally applicable to & constant-speed propeller because
the constant-speed mechanism is not brought into operation.

Both angular velocity of roll and increment in forwerd
velocity clearly affect the torque of the propeller. The engine
will attempt to alter its revolutions to attain an equilibrium
value. If the propeller has fixed pitch, the adjustment will
take place and its amount will depend upon the law of varia-
tion of engine torque with engine revolutions for the particu-
lar engine used. (See reference 3.) If the propeller is of the
constant-speed type, the pitch-change mechanism will at-
tempt to alter the blade pitch; the resulting change in eero-
dynamic torque opposes the change in revolutions. The flue-
tuations in rotational speed and the associated variations in
aerodynamic torque and thrust of the propeller are then func-
tionally related to the law of control of the pitch-change mech-
anism and the dynamics of its operation. (See reference 11.)

The present report will be limited to a study of the effects
of yaw and of angular velocity of pitch. In the following
sections d17%/V, and d17,/V, are evaluated for yawed motion.

PROPELLER IN YAW

Ratio dV)/V, for yawed motion.—The increment dV) is
the component parallel to 17 of & side-wind velocity computed
as follows: The velocity 1, is regarded by analogy with
wing theory as passing through the propeller disk at en
angle ¢y—¢ to the axis, where ¢ is the angle of yew and ¢
mey be termed the “induced sidewash angle” (fig. 2). The
side-wind velocity, for small values of both ¢ and ¢, is
accordingly V.(y—¢).

The sidewash arises from the cross-wind forces. These
forees are the cross-wind component of the thrust 7 sin ¢
and of the side force known to be produced by yaw X cos ¢.
(See fig. 3.) The analysis is restricted to small ¢; these
components are then approximately 7y and Y.

If the sidewash velocity far behind the propeller is v,
the induced sidewash at the propeller may be taken as ,/2
by analogy with the relation between the induced dowmn-
wash at a finite wing and the downwash far behind the wing.
Note that 1 diameter may be considered “far” behind the
propeller as regards the axiel slipstreem velocity; 95 percent
of the final inflow velocity is attained at this distance.

f43107—850——14

Ly -~ P
2

Velocity V outside the slipstream

. Y
FIGURE 3.—Vector relations pertaining to the sidewnsh of a propeller in yaw. (Allalr velocl-
ties meagured relstive to propeller hmb.)

As o first approximation, thrust end side force are assumed .
to be uniformly distributed over the propeller disk; cor-
rections due to the actuel distributions are investigated in
appendix A. Under this assumption the momentum theory,
supported qualitatively by vortex considerations, shows
that the slipstream is deflected sidewise as & rigid cylinder.
The sidewise motion induces & flow of air around the slip-
stream as in figure 4. The transverse momentum of this
flow is, according to Munk (reference 12), equal to the trans-
verse momentum of another cylinder of air having the same
diemeter as the slipstream at all points and moving sidewise
with the same velocity as the slipstream boundary. Note
that the air within the slipstream has & greater sidewise
component of velocity than does the shpstream boundery.

Far back of the propeller the ratio is T—.-—1+2a The time

rate of change of the transverse momentum of the air flowing
at free-stream velocity through this second cylinder should
be included in setting up the momentum relations for the
sidewash.

Fi6eRE &—Flow Induced by the sidewise motion of an Infinits cylinder In a fluld nitislly
&t rest.
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By equating the cross-wind force to the totel time rete of
change of momentum,

Y 7
T+ T¥=pV. # ty+oV JF’. 542) ‘}’. v-)

to the first order in ¢, where the first term on the right is the
contribution of the slipstrcam and the second term is the
contribution of the air displaced by the slipstream. Om
dividing by pV2D? and using the relations ¥V,=71(1+a) and
Ve=T17(1+2a), I i o

2
o/,2 '; (Tc'ﬁ'l‘yc) e
v, . T (12)
(+ar | 1+ ey

where ¢ is. the induced angle of sidewash at the propeller.
Glauert (reference 4) deduces almost. twice this value at
small values of ¢ by neglecting the reaction of the air dis-
placed by the slipsiream.

It was shown earlier that the effective side wind in the
plane of the propeller is T7,(¢—¢’) and d17 is the component
parallel to 17; that is,

dTy=V, (y—¢') gin 4 (13)
The value of ¢ from equation. (12) may be introduced and

the relat,ion“—zr T=a(1+a), from simple momentum theory,
may be used to eliminate 7. There results

dV, sin 0

= fow—si) 2= | (138)
where .
(1+a) [(14+a)+(14-2a)]
and
fo=ft (15)

Ratio dV,/1’, for yawed motion.—As V,=T17(1+}a) for un-
yawed motion, the changes produced by yaw are

dVe dV, da  da

A ANE S e e 16)
if dV}V, which is cos ¢y—1 w%’; is neglected as being of the
second order in ¢.

In order to evaluate da, figure 2 is first considered. The
component of the effective side wind in the direction opposite
to the blade rotation is dVy="V1,(¢—¢') sin . This component
acts to increase the relative wind at the blade, and therefore
the thrust, in quadrants 1 and 2; it acts to decrease the rela-
tive wind, and therefore the thrust, in quadrants 3 and 4.
More exactly, the change in thrust due to the side wind is
distributed sinusoidally in . It is clear that this incremental
thrust distribution by its antisymmetry produces a pitching
moment.

Momentum considerations require an increese in inflow in
quadrants 1 and 2, where the thrust is increased, and a

decrecase in inflow in quadrants 3 and 4, where the thrust

is decreased. The variation should be sinusoidal in 8, and the

assumption that the variation is directly proportional to the

radius is sufficiently accurate for computing the effect on

the side force. Such a representation is illustrated in figure 5.
X

Fravre 8.—Pesspective view of three-dimensionsl graph of the sasumed incremental inflaw.
The analytical expression is
do=YVda
=kr sin g (17
where k is a constent to be determined. Applying the mo-
mentum theory to evaluate the pitching moment 3 in terms
of the inflow modifications produced by the pitehing moment
gives . . .
R o .
M=J; ﬂ poVor d8 dr rsin 6(2 dr)
By substitution of the relation for db,

R [
LI=2ka.J; fu  sint 0 d8 dr

Upon integration,
= 16VAL, - o
“(+a)rR
where
M .
MF;V"D‘*' —
but, by equations (18) and (17),
dV._ da o
V. 1+ta
krsin @
= 14a
or
dV, 16M.rsin 6
'V. (1+a)lr (18)
where

z=—R
Summation over blade index k.—The compunent-velocity

increments due to yaw have been obtained in the preceding
two sections as
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Y

T":=(1-l]:a f(a)—_fl(a)%]si.n 0 (13a)
a1, 18
Torto (s o

where the subseript & has been added to refer to conditions
at the Lth propeller blade. These values of d17/V, and
dVe/V, mey be substituted in equations (5) to yield values
of 8(dF.) and 5(dT.). The values of 5(dF,) and 5(dT.) thus
found may be inserted in equations (6) to (11), which
give the several forces and moments the propeller might
conceivably experience.

The summations over k indicated in equations (6) to (11)
affect only the factors involving sin 6, and cos 6;. The several
factors are, upon evaluation,

=B
;} sin 8;—;} sin 0, cos 0.—
If B23, .
> sin =2
-]
If B=2or1,

k=8 B
§ sin? 0‘;=§ (l—COS 201)

but the average over 4 is B/2.
k=B
The nonvanishing factor;l) sin? 6, occurs only in eque-

tion (7) for the side force ¥ and in equation (10) for the
pitching moment Jf. The other hypothetical forces_and
moments that might be produced by yaw are, accordingly,
all zero.

When the relation
k=B

> sin® f,=3

is used, equations (7) and (10} become in nondimensionsl
form

Y=g (D), o [FVo—Hit0) T2 | o+ 2 A1e) w e
- (19)

24=3(3), . J. [row—r@Z] e+ 3D e
(20)

For simplicity the following additional ebbreviations are

introduced: 5
=B (D), ne.
a’=lJ‘l p.A'dJ:

x x,
11 ,
b=_| w(—Blzdx (21)
l'

¢ —;f #0 dx

d’=; n(—D'):t’ dz
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where the signs have been chosen to make a’, &', ¢, and d’
positive quantities.

Solution for ¥, and A, for single-rotating propellers.—
With the preceding substitutions, equations (19) and (20)
become

=5 [ r@v—s@Z ]« %M,b']
(22)

2~ | r@v-n@L | e—Eara]

These are simultaneous linear algebraic equations in ¥,
and )f,. The solution for Y, is, after simplification,

1@ (0o
A 1Y g ¥
S T U e

which meay be written in the form

f(a)o’a’

‘l."
s o @)
where

Numerical evaluation shows that the denominator of equa-
tion (23) does not differ greatly from unity; therefore, ¥, is
roughly proportional to a’.

Similarly, the solution for 11, is

_ a)a’'c’
M=V BT @10+ 7 = TF @

which may be put in the form
1488 o)
where
; _de 8

The relative magnitudes of the quantities are such that Jf,
is roughly proportional to ¢’.

Solution for Y, and Af, for dual-roteting propellers.—
The foregoing equations apply only to single-rotating
propellers. With dual-rotating propellers the asymmetry of
the disk loading, which for a single-rotating propeller produces
the pitching moment due to yaw, is oppositely disposed over
the front and rear sections. The resultant over-all disk
loading, therefore, is elmost symmetrical end gives rise to
a negligible pitching moment—that is,

M.~0 27)

The induction effects essociated with the respective disk-
loading asymmetries of the front and rear propeller sections
very nearly cancel even though there is & finite separation
between the two sections. This fact, which may be regarded
as a consequence of the relation (27), is represented by
putting A.=0 in equation (22).. The result is
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1 +§ fila)d'a’
This equation differs from equation (23), which applies to
smgle rotation, in that unity replaces the larger quantity

_’—A in the denominetor. The sideforce coefficient Y, is

a
therefore larger in the case of duel rotation. With data
for conventional propellers, the increase averages ebout
18 percent and reaches 32 percent at low blade angles.

The increase in side force is due to the leck in the dual-
rotating propeller of the asymmetric distribution of inflow
velocity across the disk which, for the single-rotating propel-
ler, is induced by the asymmetric disk loading. The inflow
asymmetry is so disposed as to reduce the change in engle
of attack due to yaw on all blade elements. The behavior
is analogous to that of downwash in reducing the effective
angle of attack of & finite wing.

The inflow asymmetry is not the only effect analogous to
downwash in wing theory; the sidewash of the inflow is
another such effect and serves to reduce the side force still
further. Sidewash is, however, common to single- and dual-
rotating propellers and affects both in the same way. An
examination of the steps in the derivation shows that the

term % fila)o’a’ in the denominator, the absence of which

would inecrease the value of 17, is due to the sidewash.

Equations (23) to (28) give the stability derivatives of
gingle- and dual-rotating propellers with respect to yaw, but
the results are not yet in final form. There remain the
evaluation of a’, ¥, ¢/, and 4’ and the introduction of a factor
to account for the effect of a spinner end another factor to
correct for the assumption of uniform loading of the side
force over the propeller disk.’

Explicit representation of a’, b’, ¢’,and d’.—Equations (21)
show a’, ¥, ¢/, and d’ to be integrals involving the
functions .A4’, B/, (, and D', respectively, which are defined
in equations (4) in conjunetion with equations (1) and (2).
The quantities A/, B’, (”, and D’ are, upon evaluation,

.-1’=c;- sin ¢+Cz cos ¢
B’'=—[e;_ cos ¢—c; (sin ¢ cse ¢)]
C'=¢; cos ¢—¢; (sin $—2 csc ¢) [ (20)

Di=—(er, 7 cso]: :—n cos ¢)

if terms in the coefficient of profile dreg c,, are neglected as
being smell in comparison with the terms in¢; . The neglect
of ¢4, is valid only for values of ¢ not too near 0° or 90°.
From figure 1, fy=¢+a«. Then, for « n the unstalled

range,

sin By==sin ¢ cos a}sin « cos ¢

ssgin ¢+ cos ¢

and -

¢, Sin fyser sin ¢4-¢; acos ¢

=¢;_8in ¢+-c; cos ¢

the right-hand member of which is just .’ in equation (29). -
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This relation provides the important result that, although
both ¢ and ¢; depend on the inflow, the slipstream rotation,
and the value of V/nD, the function A’ is independent of
these quantities and depends solely on the geometrical
blade angle f,. This relationship leads directly to the inter-
pretation, to be established presently, that the effeotive fin
area of a propeller is essentially the projected side area.

The introduction of 8, does not succeed in similarly elimi-
nating ¢ and ¢; from B’, €', and I’ but does result in a
simplification in B’ and C’. The summarized results are,
to the first order in &, with D’ left unchanged:

A’=e;_sin By
B'=—(¢;_cos fy—c; csc &)
C’'=c¢;_cos fy12¢;csc ¢

D=—(¢1, 77—~ :::’:-—c; cos ¢)

The integrals (21), in which 4’, B’, ¢, and D’ occur, must
now be evaluated. Upon substitution,

a'=c—:-‘f1p8inﬁqdl' w

b’-—c" cosﬂadz——rm,csc é dr
> (30)

1
c’=—cl‘f AT COS ﬁodx+gf1p.rc;csc ¢ dr
T Is T kY

[ cl¢fﬂ:2c°s,¢dr

T80 ¢

C"fly.r’a cos ¢ dr
n P

where
b

JER
and & is the blade width.
Evaluation of a’, b, and ¢/.—The i.nteg'ral a’ is already in
its simplest form in equations (380}, as is the first integral

of &/, which is identical with the first mtegral of ¢/. U the

first mtegrs.l of b’ is defined as b,

b =b—b
1)
G'=bi+2bg
where
61=f:—_‘ J: ur cos fodz
' (32)

b,=é f’: pxepcse ¢ dz

In the attempt to evaluate b, it was found that, if the blade
section coefficient of profile drag and the rotation of the slip-
stream are neglected, the thrust coefficient is

T
Te=2 12

1 ’
=L (1+a)xo 2t o0 ¢ dz
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where
J— 3

If an average value of 1-4a over the disk is used, 14a can
be taken from under the integral sign, and

jod AT,
*T ¢ 2(l+a)

But, by the simple momentum theory,
27
; ¢=d(1 +a)

Therefore,
—
L

" &

A greph of the variation of 2a/x with T is given in figure 6.
Approximate evaluation of d’.—The contribution of

¢, 1

d pr 2::: dx—%‘flp:c’a cos ¢ dr

to Y. is small. It is found, by using the largest value which
o may have without causing stalling of the blades (about

% radian), that the second integral can be neglected, with the
result that
r_Cla (1 jco8’o
V= ) g &

Note that ¢ involves the inflow velocity and the slipstream
rotational velocity. These velocities, if assumed to be
constant over the propeller disk, may easily be related to
T. and @, respectively, from momentum considerations.

Curves of d’ have been computed for a typical plan form
(Hamilton Standard propeller 3155-8) and are presented in
figure 7. This chart makes use of an altered notation intro-
duced later in the report; the ordinate is the quantity

=%

and a parameter is the solidity at 0.75R,

=52 (D).me

The abscissa is T/rnD. The error in computed side force due
to using this chart for plen forms other than the Hamilton
Standard 31556 should be negligible. The chart is not
sufficiently accurate, however, for precise computation of the
pitching moment due to yaw.
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FioURE 7.—Variation of 1 with V;aD and solidity. Approximate curves for blade-angle
settings at which the biades are not stalled.

Correction for nonuniform distribution of side force.—
The induced sidewash angle ¢ as calculated in the foregoing
is based on the assumptions thet the thrust and the side force
are each uniformly distributed over the propeller disk. The
error in effective average sidewash due to the assumption of
uniform thrust distribution can be shown to be smali; the
error due to the assumption of uniform side-forece distribution
is appreciable. The effect of this error on the computed side
force is small, but not negligible.

The side force is actually distributed over the propeller
disk nearly as the product of the integrand of the most im-~
portant term in the side-force expression ¢’ and sin?. The
integrand of a’ is proportional to the blade width times the
sine of the blade angle, which tends to be greatest toward
the blade roots due to the twist, and sin? § has maximums
&t §=90° and 270°. The side force is therefore concentrated
pear the blade roots and along the Z-axis. In calculating an
effective average of the part of ¢’ due to the side force, this
distribution of the side force is taken into account by using
in effect the integrand of a’, which is x sin 8, times sin*f as a
weight factor. The detailed treatment is given in appendix A.
There is obtained for the effective average of the induced
sidewash angle

_ 2@ytkE) o
& =
(1+a)t [1 + Ty -|-12a)’]
where
f‘ (usin ﬂo)"’dz
b= ———; (34)

is & correction factor derived in appendix A. If ¢ is inserted
for ¢/ in the analysis for side force and pitching moment,
the corrected forms of equations (23) and (25) are,
respectively,
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_x (@)d’a’
Y.=%y _a.;'__

T—x Thod

_x (a)m
Me=g ¥ _FLL_1+ (@ —A")

where the abbreviation

k= .ll%)kx
f" (I-‘ Sig ﬂo)’ dr

=f1(a) . {' J: A d.r)’ (35)

has been used. The factor k, may be called the sidewash
factor. :

Correction for augmentative effect of spinner.—If the
spinner-nacelle or spinner-fuselage combination has a fairly
large fineness ratio, the circumferential component of the
gide wind is speeded up in passing around the blade shanks
(fig. 8) by approximately the factor

()

where

J_‘=Spmner radius

K constant (1 for fineness retio « ; 0.90 for fineness ratio 6)

e e
- T —

FiTRE 8.—Effect of splnner on the eompoanent of the flow In the plane of the propeller disk.

This local increase in side wind is equivalent to an increase
in the angle of yaw ¥ in the same ratio. Thus at radius zR
the effective angle is

- [1 +x(2)]
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The effective average yaw over the digk v, is obtained from
the consideration that dY, is nearly proportional to the
integrand u sin § of the dominant term g’. Approximately,

therefore,
1
Femky [ [ 14E (%) | wein o i
1
=k, i dzx
¥ J;.u £in By
where k is 2 constant. Accordingly,

NG il
J;p.sinﬂndr

. (36)

According to this result, if the propeller is equipped with
a spinner, the previously given expressions for side force

and pitching moment should be multiplied by the constant.

k., which may be termed the “spinner factor.” The value of
k. is of the order of 1.14 and varies slightly with blade angle.

New deflnitions.—It is worth while to introduce certain
new definitions at this point to put the final equations in
better form. The original definitions were chosen solely with
a view toward clarity in presenting the derivation. The
principal change is the replacement of

“= (D)

which is proportional to the solidity at 0.76R, by the actual
solidity at 0.76R

4
o=z L

=:43_B;: <%)ll.1l2 (37)

This change entails replacing all the integrals oceurring in
the equation by 3x/4 times the former values. Thus a’
is replaced by I, b; by Iy, & by I, and A’ by A, where

In addition, the following definitions are introduced:
i
Cy =&

_8

=7,

20y’
oy

0r ’i =
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and
M
0- _q SI
=831,
T
r . 0Cn
' Oy =y
where the propeller disk area
_=?
§'==

The symbols C’ and (s’ have been so chosen in relation to the
conventional side-force and pitching-moment coefficients of

an airplane Cy, and C,, that conversjon is obtained through

the relations

where § is the wing area and ¢ is the wing reference chord.
Note that in all the foregoing ¢ is measured in radians.

Correction of side force for compressibility.—It is shown
in eppendix B that a first-order correction for compressibility
is obtained by dividing the side force by +1—2373, where
MM, is related to the stream Mach number Af and V/nD by
the curve of figure 9. The correction is valid only below the
critical Mach number for the propeller.

Summarized effects of yaw.—With the new definitions,
the side-force derivative for a single-rotating propeller is

3Y/d
oy =22

= . k!!(a!d'Il . (38)
ﬁ-{-k.&f;

and the side-force derivative for a dual-rotating propeller is

a.’ oY /oy
Ty '&37'—

kf(a)ol,
=i, (39)
For a single-rofating propeller the pitching-moment
derivative is
O, 0M[OY

k. flaym
=1 F k(=B #0)

and for & dual-rotating propeller the pitching-moment
derivative is negligibly small.
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The side-force derivative may be corrected for com-
pressibility by dividing by +/I—3ff. The same correction
may be applied to the pitching-moment derivative but with

less eccuracy.
The guantities involved are:

Spinner factor s
» Ty .
K L (;) usin B, dz
ku=1T 1 (36)
L s sin o dz
Sidewash factor . .
J‘l 2 sin? B, dx
kl=.fl (a) < 1 z 2 (35)
S(J‘ g sin Sy d.l‘)
UF
where
_ 2(14-2a)*
F@=r3 gty
Inflow factor

N

4
VinD
FIGCRE ¥.—Variation of the ratio (Effective Mlach numkber)/(Stream Mack number) with ¥7n.D for use In relation C:’,'T%- C:’

Mt
g-factor
f(a)=(1+a)[(1+a)+(1+2a)’l
1+ (1+2a)*
Solidity at 0.75R
4B/ b
=5 (D)o

3 L,
I1=Z C;ﬂj;'ﬂ sin ﬂo d:

3 1
I’=Z c..Lp cos Sy x dr

3 I“cos’:ﬁz,dz

I;=4C:¢ P en ¢

(arI,—J 2;“) (o‘I,+2Jg§

A= o(l4aly)

aI,+2Jf_—a
M= 5+t ely

(14)

@7

(41)

42)

(43)

(44)

(45)
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and in equetion (36), for a nacelle fineness ratio of 6, K=~0.90
and, for a nacelle fineness ratio of =, K=1.00.
The charts of figures 6, 7, 10, and 11 ere provided for

determining 2afr, I, f(a), and fi(a}, respectively.
Bequired acouracy of k,, k., and A—To the degree in

which comparison with existing experiments establishes the
accuracy of the sideforce formulss—about +10 percent
average error—it is sufficiently accurate to use the mean
velues 0.4 for k. and, for the usual-size spinner (z,=0.16),
1.14 for k,. To the same accuracy, the terms in J may be
omitted from A, and J; may be set equel to the average
value 3, with the result that

A“ G'Ig’

148¢

Availahility of cherts of side-force derivative.—In refer-
ence 13 is presented an. extensive series of charts computed
from equations (38) to (44) for two conventional propellers.
The derivative Cy’, is given as a function of 1/nD for blade
angles from 15° to 60° and for solidities from two blades to
six blades, with single rotation and dual rotation. In refer-
ence 14 is presented a method of extrapolation whereby this
set of charts mey be used for determining Cy’, for all
conventional propellers without resort to the original
equations (38) to (44).

Pitching-moment derivetive.—By numerical evaluation of
equation (40) the pitching moment of a single-rotating
propeller in yaw is found to be of the order of the moment
produced by a force equal to the side force acting at the end
of a lever arm equal to the propeller radius. This moment
is small and has heretofore been neglected in aireraft stability
studies. Note that the effect is a cross—coupling between
yaw and pitch.

The dual-rotating propeller develops no pitching moment.

.205
PROPELLER SUBJECT TO ANGULAR YELOCITY OF FITCH

Ratio dV,/V, for angular velocity of pitch.—The angular
velocity of pitch makes no direct contribution to the rota-
tionel velocity in the plane of the propeller disk 15. It is
known from Glauert’s work (reference 3), however, that
pitching giveas rise to a side force and to a pitching moment.
This side force induces a sidewash that affects Ty, as in the
case of the yawed propeller. The change in 17 is accordingly
the same as the induced part of the total change for yawed
motion. This change is obtained by setting =0 in equa-
tion (13a}:

YY)

Y. ( +a5 !.f 1(“) (48)
where
2
o=t s

Ratio dV,/V, for angular velocity of pitch.—The direct
increment, due to pitching, in the axial velocity V, is
gr sin 6.

The induced increment due to the aforementioned pitching
moment is, by equation (18),

V. 160z . 8
d+a) =« s

The total increment dV, is the sum of the direct and the

induced increments. Therefore

Goghlorofras] @

Expressmns for Y, and Af..—Upon introducing the equa-
tions (46) and (47), the equations that result here in place
of equations (19) and (20) for the propeller in yaw are:

- f [ Z]a+ [ato o] pla

(48)

g} <n>o,., [0 Fos 040 2] s

Solution for Y, and Af.—By using the abbreviations of
equations (21), equetions (48) become

F=T 5@ o 0+ 18 v}

2M==%J {—fn(a)%c’—[(l +a)§_,lly).-+1—6f[—‘:| d’}

which are simultaneous linear algebraic equations in Y, and
Af.. The solution for ¥, and 1/, is, after simplification,

O'IQ—JQ—G
L3

D T
g ——'—'q '(1+a)—
?T 8 [1 @,(L—A)](Hd-)
. 1-[-'&%0'11) ¥
1 (@)
oly ( 140/, 8 ‘TA

gD( T
Me= -— 1+a)_
2 ¥ 1488 g

Side-force derivative Uy’ and pitching-moment derivative

Cy' ,—Side-force end pitching-moment derivatives may be
defined as follows:

T (%D,)
R
2
J.‘Za
—(1+a) [1+M (II_'A)] (14cly)

()

P> ’
ET’DS

IMFII)
8 11(‘1)
14a "I'< A g °A

xI?
="

where
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Rough approximations may be obtained by omitting the
induction terms—that is, the terms due to sidewash end to
inflow asymmetry. There result

Cz"ﬁ’— (1+G)G'Il
O’ = —(1+a) 55 ok : )

Comparison of angle of yaw with angular velocify of pitch
to produce same side force.—To the same rough approxima-
tion es equation (49),

Cr,' Bf(a) k 8- I 1

The ratio of ¢ to ¢Df27" to produce the same side force is
therefore

I S 4
DET="T7,
s (1 +a}I:
Q)Kgly
=~ I’-
kI (50)
This ratio is of the order of unity.
Maximum obtainable side force due to pitching.—The
meximum side-force coefficient due to pitching occurs, for a
given blade-angle setting, when ¢D/21 is 8 maximum. Maxi-

mum ¢D/2V in unstalled flight is determined by the maximium
normal acceleration that the airplane can develop, which is

determined by the maximum lift coefficient. The normel
acceleration is
a,=ql’
from which
- (51)

At & given speed the maximum normal acceleration a,,,,
could be realized at the top of an inside loop. The relation

is
%a._u=Downward lift4 Weight
=ClneiS § VW
or
oC 1
=GRt m)e (52

The value of a,,,/V? is greatest when 1 is least. If the

discussion is limited for the present to the minimum speed
for level flight Ve,

POL.._, 1

WIS Vi

From equation (52),

=yl

and therefore, from equation (51),
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D - gD
(g-v)m i luz;
A practical upper limit to (gD/2V) uar at the stalling speed

would be afforded by a hypothetical fighter airplane having
the following characteristics:

Vitar=75 mph
=110 fps
D=12 {t

(gv) _32. 2X12
mes | (110)F

=0.032

Then

By equation (50) the angle of yaw, in radians, that would
provide the same side force is approximately .-

=i, (8F)...

If a minimum blade angle of 15° at stalling speed is assumed,
the ratio I/k,J: is 1.13 for the representative Hamilton
Standard propeller 3155-8. Therefore, (¢D/2V)per would
be equivalent in producing side force to an angle of yaw

¥v=—1.13X0.032
=—0.036 radian or —2.1°

The resulting side force would be quite smell.

Many times the preceding value of (¢/2V )me: is obtain-
able during the spin, which involves wing stalling. If the
spin is excluded from consideration, therefore, the general
conclusion to be drawn from the example is that even in an
extreme maneuver the side force due to rate of pitching is
very small end in all ordinary maneuvers this side force is
negligible.

Maximum obtainable pltohmg moment due to pitohing.— -
The preceding data, when applied to the pitching moment
due to pitching, indicate that the maximum obtainable
pitching moment is of the order of the product of the propeller
diameter and the maximum obtaineble side force due to
pitching. The general conclusion about the side force implies.
that the pitching moment due to pitching is small even in
an extreme maneuver, with the exception of the spin, and in
all ordinary meneuvers is negligible.

Forces due to angular velocity of yaw.—Angular velocities
of yew attain magnitudes of the same order as angular
velocities of pitch. The forces on a propeller due to yawing
are, like those due to pitching, negligible except in the spin.

PHYSICAL INTERPRETATION OF PROPELLER IN YAW

Concept of projected side area.—The area projected by a
propeller blade on & plane through the axis of rotation and
the axis of the blade is

L"bsinpndr
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The average area projected by all the blades of a rotating
propeller on any plane through the exis of rotation is the
projected side area - .-

R
S,=§Lbsinﬁudr

where B is the number of blades. From this relation, it can
be established that the product ¢J; may be expressed as

a'I1=c;° % : (53)
'Thus ¢I;, which

figures so prominently in the expressions for the side-force
derivative Cy’,, is proportional to the projected side area
of the propeller. In reference 13, I, is termed the ‘““side-area
index.”

Effective fln area and sspeot ratio—Inasmuch as
DS, is the aspect ratio .4 of the projected side area S,, it is
also true that

where S’ =1—r42! is the propeller disk area.

- (54)

0I1=21A
Substitution of equation (5§3) in the numerator and equa-
tion (64) in the denominator of equation (39) gives for a
dual-rotating propeller

oY /oy . )

a)gs, 1+k<)8

Y b\0~ i,
(G g (4 1+z?

y (66)

as kg, =0.4 on the average and
c;c
Polag 0.95

For comparison, the corresponding expression for an actual
fin of the same area and espect ratlo, at which the local

dynamic pressure is f(a)g, is

AY[dy__¢1,

- ~(56)
a)gsS, 2
1+

when the lifting-line form of aspect-ratio correction is used.
By omitting k., which merely accounts for the favorable
interference between spinner and propeller, equation’ (55)
can be written in the form of equatlon (56) by mtroducmg
an. effective aspect ratio
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It follows that a dual-rotaling propeller in yaw acts like
& fin of which the area is the projected side area of the propel-
ler, the effective aspect ratio is approximately iwo-thirds the
side-area aspect ratio, and the local dynamic pressure is f(a)
times the free-stream value. A single-rotating propeller may
be shown to act similarly, but the cffective aspect ratio is
markedly less and is not so simply exprossed. A mean cffee-
tive aspect ratio for both single- and dual-rotating propellers
is about 8.

Effective dynamio pressure.—By the definition of a, the
expression. 1 (1+a) is the axial wind velocity at the propeller
disk. Accordingly, (1+4-a)’q is the dynamic pressure at the
propeller disk. The pressure (1-a)*q is only slightly greater
than f(z)q, the effective dynamic pressure of cquation (56).
Thus the equivalent fin described in the proccdmg paragraph
may with small error be regarded as situated in the inflow
at the propeller disk and subject to the corresponding
augmented dynamic pressure.

Comparison of side force of single- and dual-rotating
propellers.—It has been pointed out in the discussion accom-
panying the derivation of Y, and Af, for dual-rotating pro-
pellers in yaw that the dual-rotating propeller averagos
18 percent more side force than the single-rotating propeller

- and that the increase reaches 32 percent at low blade angles.

The detailed explanation is given in the same discussion.
In brief, dual rotation eliminates certain induction effccts
associated with single rotation; the dual-rofating propeller
acts as if it has a considerably higher aspeet ratio and
therefore develops more side force for the same solidity.
Magnitude of pitching moment.~—JIt has been shown that
yaw gives rise to zero pitching moment for a dual-rotating
propeller and to a finite pitching momepni, given by equa-
tion (40), for a single-rotaling propeller. The numerical
evaluation of equation (40) for typical cascs shows thut the
pitching moment is of the order of the moment produeced by
a force equal to the side force, acting at the end of a lever
arm equal to the propeller radius. This cross-coupling be-
tween pitch and yaw is small but possibly not negligible.

PROPELLERS IN PITCH

The results for propellers in yaw may be applied to propel-
lers in pitch from considerations of symmetry. The normal-
foree derivative of a propeller with mspeet to pitch is equal
to the side-force derivative of the same propeller with respect
to yaw, and the yawing-moment derivative of a propeller
with respect to pitch is equal to the negative of the pitching-
moment derivative of the same propeller with respect to yaw.
These relations are invalid when the propeller i8 in the up-
wash or downwash of a wing. (Sce reference 13.)

COMPARISON WITH EXPERIMENT

Experiments of Bramwell, Relf, and Bryant.—The experi-
ments of Bremwell, Relf, and Bryant in 1814 with a four-
blade model propeller in yaw (reference 15) are worth noting
because the experimental arrangement was designed specif-
ically for the problem. The balance was arranged to yaw
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FIGCRE 19.—Comparison of calculated curves of Cy’/y with the experimental valnes of
refarence 15.

with the propeller and to measure the side force directly
with respect to body axes. Tare readings were inherently
small in comparison with the forces being measured. Tunnel
speed was calibrated by comparison of thrust curves for the
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small values of §, is compared in figure 12 with the experi-
mental values of reference 15. There is included for further
comparison the theorefical curve calculated by Misztal
(reference 9). The curve calculated from the formula of the
present report eppears to give somewhaf better agreement
than that of Misztal but the improvement is not conclusive.
The principal objection to Misztel's formula remains the
labor of its application rather than its defect in accuracy.

Experiments of Lesaley, Worley, and Moy.—In the experi-
ments of Leeley, Worley, and Moy reported in 1937 (reference
16), the nacelle was shielded from the air stream, with the
result that only forces on the propeller blades wers com-
municated to the balances. A 3-foot, two-blade propeller
was used. Measurements were made of six components of
the air forces on the propeller.

Calculated curves of Cy’/y are compared with the experi-
mental values of reference 18 for ¢y=10° in figure 13. Note
that the original deta of reference 16 were presented therein
with respect to wind axes, and the data heve been converted
to the body axes of this report in the presentation of figure 13.

Experiments of Runckel.—The most complete experiments
on yawed propellers *—the only published experiments on
full-scele propellers—are those of Runckel (reference 17).
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Fraure 13.—Comparison of caleulated and experimental values of Cr//§ for two-blade model propeller. Curves are terminated, except for
occurs. Experimental data from reference 16 and converted from wind axes to body axes. i—
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Runckel tested single-rotating propellers of two, three, four,
and six blades and a six-blade dual-rotating propeller. The
diameter was 10 feet. An attempt was made to correct for
the wind forces on the rather large unshielded nacelle by
subtracting the forces and moments measured with zero
yaw from the corresponding forces and moments measured
with yaw at the same value of V/aD.

Calculated curves of Cy' /¢, including & spinner correction,
are compered in figure 14 with the faired experimental curves
from reference 17 for 10° yaw. In reference 17, as in reference
16, the original data were presented with respect to wind
axes and the curves have been converted to the body axes

of this report in the presentation of figure 14. In figure 15
the unpublished experimental points for the single-rotating
gix-blade propeller are presented for comparison with the
faired published curves as converted to body axes.

Accuracy.—From these several comparisons of the theory
with experiment it appears that the average disagreement is
slightly less than 10 percent. This accuracy is of the
order of that obtainable by the vortex theory for tho un-
inclined propeller when the number of Llades is tacilly
assumed to be infinite by the omission of the Goldslein
correction for finite number of blades. The same assumption
is made in the present analysis.



PROPELLERS IN YAW 211
56
7
7
¥
<
v
48 v v ;iv ‘A i
v b
v S
h v
v v -
\V v v Vv %\"\
v v
vy ¥ % - \v\
4 9
- v v "\v -
N v oS
v K v \\ %
v \Z ~N
32 LAERAL A _ N
\v ; 8 =45°at O75R .
A7
v v
C'rﬁ o~ .zv
_ Q-Fv
v
24 Y Yo
v T
H oV ]
8 =25%at O75R
16
v Experimental points
—_——— Faored curve
a8
g £ 8 74 y7-3 2.0 24 28 32
1 753
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CONCLUSIONS

The foregoing enalysis of propellers in yaw and propellers
subjected to an anguler velocity of pitch permits the follow-
ing conclusions:

1. A propeller in yaw acts like a fin of which the area is the
projected side area of the propeller, the effective aspect
ratio is of the order of 8, and the effective dynamic pressure
is roughly that at the propeller disk as augmented by the
inflow. The variation of the inflow velocity, for a fixed-
pitch propeller, accounts for most of the variation of side
force with advance-diameter ratio.

2. A dual-rotating propeller develops up to one-th.lrd
more side force then a single-rotating propeller.

3. A yawed single-rotating propeller experiences a pitching:
moment as well as a side force. The pitching moment is of
the order of the moment produced by & force equal to the
side force, acting at the end of & lever arm equal to the
prope]ler radius. This cross-coupling between pitch and
yaw is small but possibly not negligible.

4. Propeller forces due to an angular velocity of pitch or
yaw are negligibly smal! for the angular velocities that may
be realized in maneuvers, with the exception of the spin.

Laxcrey MEMORIAL AERONAUTICAL LABORATORY,
NatronaL Apvisory COAMITTEE FOR AERONATTICS,
LaANGLEY FrELD, Va., October 11, 1948.



APPENDIX A

I{ the assumption that the side force is uniformly distri-
buted over the propeller disk is abandoned, it is necessary
to proceed differently beyond equations (6) in deriving Y.
For the purpose of obtaining an effective average induced
sidewash, it is permissible to neglect the small term B’ (ﬂ’:
in equation (5), which gives '

(I+a) /b ave .,
8(@F)= 4 (D)o.'lm_vf"Adz

An equivalent differential relation for the time average side
force, divided by »V2[?, on an element of disk area z df dz
may be substituted for the summation of equation (7}, as

*Y dé

(Al)

m—; dz d9=Bs(dF,) sin 8 o - (A2)
The fraction %ll has been shown to be given by
Pr=—¢) din o 13)

where ¢’ is the local induced angle of sidewash at the propeller
disk. Combining equations (A1), (A2), and (13), using
A’=e,, sin B, and assuming that (1+4a)! is constant over
the disk gives

dY, ecnd(1+a)?
d 8z .

sin’ ¢ f ' (—)usin frdz (A3)
R F
from which
]
Yew(ﬁf;#dﬂﬂodx
1 (=1, . )
—;J;Lamn’a,.mns,dzda)

An effective average value of ¢ is obtained by defining

2 »
r=lCH Ty [ peingds] a0
from which the effective average angle of sidewash is
l_-f"f’ ¢ 6in? 6 psin By dz do
v=Ta0 S (A5)

J;usinﬂodx

In this appendix the induced sidewash angle ¢’ is the local
212°

DERIVATION OF SIDEWASH FACTOR k.

value at the disk element z dr df, not the average value used

in the main text; ¢’ is composed of one part due to the side

force ¢’y and one part due to the cross-wind component of.
the thrust e’y. The effective averages are designated e’y

and ¢’s. Then equations of the form of equation (A5) hold

between ¢’y and «'y and betwecen ¢'r and ¢'s.

The evaluation of &’y follows: The product 17¢'y sin 6,
hereinefter called #,, is & velocity component parallel to 1%
but not necessarily in the same sense. Inorder to evaluate ry,
for use in equation (A5), it is useful to define a quantity f

such that 75108

due to yaw of the peripheral force on an clement of disk area’
zdzds. Making the simplifying assumption that the periph-
eral force on an element of the propeller disk affects only the
air flowing through that element and equating the peripheral
force to the rate of change of peripheral momentum which
this force produces far behind the propeller leads to the
relation

z%:':% zdedf=pVerdrdi2n,+pV G;fr dr da)(-}?r':l&‘u,,)

(see deﬁvation of equation (12)), or
oY,
v 2::7.{&3
(@]
o, 25oesy

T

st

Ve=T(140)
V,=V"(1+2q)
An alternative form of equation (A2) is

‘PYF’% sin 0 xdxdo

oY, oY. .
m%sf&sm 6

zdxd8 is the time average of the inerement

(A0)

where
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In equation (A3) the fact that ¢/, which depends on 8, is small
compared with ¢ allows the epproximate relation

oY,

ae=ksin’ﬂ

where k is a constant. Integration establishes the value of
k as Y ,/x; therefore

O, ¥, sin'0

T

O sin* 0

oroé T

By equation (A4),

Therefore

a?.c gin 8 Yeﬂ-ainﬂn
x0r0d « zflpsinﬁodz
FS

Equations (A6) and (A7) establish the value of a,/17,
which can be substituted for ¢’y sin @ in equation (AB) as
applied to €'y in place of ¢’. This value is

(A7)

sinf Y,usin B
* zflpsinﬂodz
I

| +a)’ [1 +t¢1225’]
Therefore, substitution in (A5) as applied to ¢’y gives

et [ ] (L n)

The integration with respect to @ results in

1 -
sin® ¢

e'r

B
oT, f
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! usin B)? ;-

= Is z
g (o)

The part of ¢ due to ¥, in equation (12), which is based on
the assumption of uniform distribution of thrust and side
force over the propeller disk, differs from the expression for
¢’y given by equation (A8) only in the absence of the factor

2y .
L3 (A8)

EI

! (usin B 5

(A9)

which is equation (34). An analysis for ¢r similar to thet
for € ¢ results in a velue that does not appreciably differ from
the part of ¢’ due to T, in equation (12); that is,

2
;Tcﬂ’

Accordingly, the effective average induced engle of sidewash
¢/, which equals ¢'y1¢'r, is given by

2 (T+hT)
(1-[—4), [1 + (1 -[-1201’]

which is equation (38). If ¢ isinserted for ¢’ in equation (12),
the factor fi(a)/8 in equations (23) and (25) is replaced by
,f1_(8t'l_) k. This is the quantity that has been celled the side-

wash factor k.. Yith the value of %, inserted,

G

tGu sin B -

o z
ke=f1(a) 8<£:p <n g d.t):

(35)



APPENDIX B
CORRECTION FOR COMPRESSIBILITY

The side-force derivative Cy’, is very necarly proportional
to the integral

3 (M .
Lo, [, e sin fo ds (41)

To a first approximation the effect of compressibility is
accounted for by replacing ¢;, by ¢ /v1—M.}, where M, is
the resultant speed of the blade section at z divided by the
speed of sound in the free stream. If the subscript ¢ is used
to designate quantities corrected for compressibility effects,

(B1)

~4
A mean effective Mach number 3, defined by the relation
I
I = : ;
V=M, (B2)
would also approximately satisfy the relation
' -
o, =28 .
¢ '\'1_]‘2- (53)

Equation (B3) constitutes the desired correction of the side-
force derivative for compressibility effects.

The determination of A4, proceeds as follows:
tions (41), (B1), and (B2), '

1usin B dz
03 V1i—Mg
1 -

oo B Bo dz

1
=i

For determining the ratio M,/M it is sufficiently accurate to
Pput '

1 M.’
=i ',“1+T . (B4)
and
1 M2
oty ®2)
although approximation (B4) will not be applied to the final
equation (B3). Then
fl M, usin B, dr
M} =102 (B6)

1 -
]o.s" sin. f, dz
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By equa--

By reference to figures 1 end 2, if inflow and rotation are
neglected,
— )
M”_a’ sin? ¢

__Ap
“anf ¢

o -2e[1+(5)]

a speed of sound in free stream
3 free-stream Mach number

‘_T
J=aD "

=r .
=g -

®B7)

The approximations p=Constant and By=¢ are likewise
adequate for the present purpose; therefore, as

equations (B68) and (B7) give

B8)
Upon integration”
TFN—0.20.04F 0 1+-IFN
A T T Bl .
(M. : » Hlog. 5o JooTT N B9)
M 2 log, 1+ 140
0.2+ +/0.04F N
where - -
A= : —_
b
_¥mD

w

Equation (B8) provides the desired relation between the
effective Mach number 3£, and the stream Mach number 3/
for use in equation (B3). A graph of the variation of Af,/Af
with ¥/nD, computed from cquation (B9), is given in figure 9.
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Note that, in spite of the rapid rise of 3/,/Af with decreasing
V/nD, for constant-speed propeller operation Af, decreases.

It mey be noted that equations (B4) and:(B5) are para-
bolic epproximations to the Glauert compressibility factor
1/41—3F. Equations (B6) to (B9) are, however, inde-
pendent of the constants of the parabolic representation.
Thus the validity of these equations is not restricted to the
case of a veriation of ¢;, with Mach number that follows the
Glauert relation; the equetions are valid for eny variation
that may be approximated in the region of interest by a

parabola, such as
e, = (A+BA)ey,

where A and B are constants,
The compressibility correction ceases to apply at Mach
numbers above the critical Mach number for the propeller.
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